کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4661914 1633477 2013 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterizing all models in infinite cardinalities
ترجمه فارسی عنوان
تشخیص تمام مدل ها در اعداد اصلی مجموعه بی نهایت
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات منطق ریاضی
چکیده انگلیسی

Fix a cardinal κ. We can ask the question: what kind of a logic L is needed to characterize all models of cardinality κ (in a finite vocabulary) up to isomorphism by their L-theories? In other words: for which logics L it is true that if any models A and B of cardinality κ satisfy the same L-theory then they are isomorphic?It is always possible to characterize models of cardinality κ by their Lκ+,κ+-theories, but we are interested in finding a “small” logic L, i.e., the sentences of L are hereditarily of smaller cardinality than κ. For any cardinal κ it is independent of ZFC whether any such small definable logic L exists. If it exists it can be second order logic for κ=ω and fourth order logic or certain infinitary second order logic for uncountable κ. All models of cardinality κ can always be characterized by their theories in a small logic with generalized quantifiers, but the logic may be not definable in the language of set theory. Our work continues and extends the work of Ajtai [Miklos Ajtai, Isomorphism and higher order equivalence, Ann. Math. Logic 16 (1979) 181–203].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Annals of Pure and Applied Logic - Volume 164, Issue 3, March 2013, Pages 230-250