کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4677303 1634794 2012 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extremely reducing conditions reached during basaltic intrusion in organic matter-bearing sediments
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
پیش نمایش صفحه اول مقاله
Extremely reducing conditions reached during basaltic intrusion in organic matter-bearing sediments
چکیده انگلیسی

Redox conditions in magma are widely interpreted as internally buffered and closely related to that of their mantle source regions. We use thermodynamic calculations to show that high-temperature interaction between magma and organic matter can lead to a dramatic reduction of the magma redox state, and significant departure from that of the original source. Field studies provide direct evidence of the process that we describe, with reported occurrences of graphite and native iron in igneous mafic rocks, implying very reducing conditions that are almost unknown in average terrestrial magmas. We calculate that the addition of 0.6 wt% organic matter (in the form of CH or CH2) to a standard basalt triggers graphite and native iron crystallization at depths of few hundred meters.Interaction with organic matter also profoundly affects the abundance and the redox state of the gases in equilibrium with the magma, which are CO-dominated with H2 as the second most abundant species on a molar basis, H2O and CO2 being minor constituents. The assimilation of only 0.1 wt% organic matter by a basalt causes a decrease in its oxygen fugacity of 2-orders of magnitude. The assimilation of 0.6 wt% organic matter at depths<500 m implies minimum CO content in the magma of 1 wt%, other gas components being less than 0.1 wt%. In the light of our calculations, we suggest that the production of native iron-bearing lava flows and associated intrusions was most likely accompanied by degassing of CO-rich gases, whose fluxes depended on the magma production rates.


► High-temperature magma-organic matter interaction strongly reduces magma redox state.
► Magma redox state can significantly depart from that of the original source.
► Native iron in igneous rocks is a striking field evidence of reduced conditions.
► Gas compositions in equilibrium with native iron are dominated by carbon monoxide.
► CO-dominated gases result from magma intrusion in coal at the Siberian Traps.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Earth and Planetary Science Letters - Volumes 357–358, 1 December 2012, Pages 319–326
نویسندگان
, , , , , , ,