کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4681365 1635094 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classification of remote sensed data using Artificial Bee Colony algorithm
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم زمین و سیاره ای (عمومی)
پیش نمایش صفحه اول مقاله
Classification of remote sensed data using Artificial Bee Colony algorithm
چکیده انگلیسی

The present study employs the traditional swarm intelligence technique in the classification of satellite data since the traditional statistical classification technique shows limited success in classifying remote sensing data. The traditional statistical classifiers examine only the spectral variance ignoring the spatial distribution of the pixels corresponding to the land cover classes and correlation between various bands. The Artificial Bee Colony (ABC) algorithm based upon swarm intelligence which is used to characterise spatial variations within imagery as a means of extracting information forms the basis of object recognition and classification in several domains avoiding the issues related to band correlation. The results indicate that ABC algorithm shows an improvement of 5% overall classification accuracy at 6 classes over the traditional Maximum Likelihood Classifier (MLC) and Artificial Neural Network (ANN) and 3% against support vector machine.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Egyptian Journal of Remote Sensing and Space Science - Volume 18, Issue 1, June 2015, Pages 119–126
نویسندگان
, , ,