کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4740689 1358598 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Digital rock physics: Effect of fluid viscosity on effective elastic properties
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فیزیک زمین (ژئو فیزیک)
پیش نمایش صفحه اول مقاله
Digital rock physics: Effect of fluid viscosity on effective elastic properties
چکیده انگلیسی

This paper is concerned with the effect of pore fluid viscosity on effective elastic properties using digitized rocks. We determine a significant velocity dispersion in wave propagation simulations by the variation of the pore fluid viscosity. Several attenuation regimes are considered which may contribute to this observation. Starting point is a virtual rock physics approach. Numerical simulations of effective transport and effective mechanical properties are applied to statistically representative rock samples. The rock microstructure is imaged by 3D X-ray tomography. Permeability values were estimated through Lattice-Boltzmann flow simulations. The dry rock moduli and the tortuosity are derived by dynamic wave propagation simulations. We apply a displacement-stress rotated staggered finite-difference grid technique to solve the elastodynamic wave equation. An accurate approximation of a Newtonian fluid is implemented in this technique by using a generalized Maxwell body. We give a practical description of how to use this approach and discuss the application limits. Additionally, we show the simulated signature of a theoretically predicted slow S-wave.


► A digital rock physics workflow including dynamic wave propagation simulations is presented.
► A practical receipt to implement a viscous fluid into a finite-difference wave propagation scheme is given.
► The effect of fluid viscosity on effective elastic properties is discussed.
► We observe a signature of a theoretically predicted slow S-wave.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Applied Geophysics - Volume 74, Issue 4, August 2011, Pages 236–241
نویسندگان
, , , ,