کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4741230 | 1358648 | 2006 | 14 صفحه PDF | دانلود رایگان |

An important methodological question for magnetic susceptibility measurements is if a variation of the soil conductivity, as a result of a change in soil moisture, influences the measured susceptibility values. An answer to this question is essential because an accurate magnetic susceptibility mapping requires a grid of comparable magnetic susceptibility values, which indicate the magnetic iron-mineral contents of the soils. Therefore, in the framework of the MAGPROX project (EU-Project EVK2-CT-1999-00019), the study aims at investigating the influence of soil moisture and the possible correlation between magnetic susceptibility and electric conductivity. This approach was realised by model experiments in the laboratory and a field monitoring experiment, which was performed in an analogical manner as the model. For the laboratory experiment, a plastic tub with a water in- and outflow system and installed lines of electrodes was used. The measurements were carried out with layers of different magnetic material within the experimental sand formation under varying water saturation conditions. For the field experiment, which was carried out from July to December 2003, two test sites were selected. The magnetic susceptibility was measured by means of the recently developed vertical soil profile kappa meter SM400 and a commonly used Bartington MS2D probe. The electric resistivity was recorded using a 4-point light system (laboratory) and a ground conductivity meter EM38 (field). The knowledge of the resistivity of the sand formation enabled an estimation of porosity and water saturation in consideration of the Archie equations. The laboratory experiment results showed a very slight variation of measured magnetic susceptibility under different degrees of moisture, indicating mainly the influence from the diamagnetic contribution of the water volume. A measurement error in connection with the measurement method, for example caused by an interfering effect of soil conductivity variations, was not found. The authors conclude, that in practical use of the investigated instruments for topsoil magnetic susceptibility mapping in the field, the influence of soil moisture and resulting soil conductivity can be neglected, especially compared to the influence of the contact between measurement loop and soil. The study presented here verifies the magnetic susceptibility data reproducibility and comparability, which provides the basis for magnetic susceptibility monitoring. Additionally, new application approaches of magnetic susceptibility measurements were proposed, which show again the versatility and the potential of the method.
Journal: Journal of Applied Geophysics - Volume 59, Issue 2, June 2006, Pages 162–175