کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4742233 | 1641574 | 2009 | 7 صفحه PDF | دانلود رایگان |

A new cell assembly for the deformation-DIA (D-DIA) shows promise for limiting the water content of samples and providing a more mechanically stable environment for deformation. The 6-mm cubic cell consists of a 6-mm diameter mullite sphere cradled in a web of unfired pyrophyllite. The pyrophyllite flows during initial compression of the D-DIA to form gaskets between the six anvils while the mullite flows to become a nearly cubic-shaped pressure medium. Measurements on olivine indicate more than one order of magnitude drop in water content to <40 ppm H/Si compared with the boron-epoxy medium. Improved mechanical stability is achieved by elimination of the thermocouple from the assembly and determination of temperature from calibration curves of furnace power vs. temperature. Three samples of polycrystalline orthopyroxene-buffer San Carlos olivine have been deformed in high-temperature creep in the new cell, at pressures of 2.7–4.9 GPa and temperatures near 1473 K. Strength is consistent with that measured in the gas-apparatus at lower pressures. Over the pressure range investigated we resolve an activation volume for creep of dry olivine of V* = 9.5 ± 7 × 10−6 m3/mol.
Journal: Physics of the Earth and Planetary Interiors - Volume 172, Issues 1–2, January 2009, Pages 67–73