کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
474343 698866 2005 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classification with incomplete survey data: a Hopfield neural network approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر علوم کامپیوتر (عمومی)
پیش نمایش صفحه اول مقاله
Classification with incomplete survey data: a Hopfield neural network approach
چکیده انگلیسی

Survey data are often incomplete. Classification with incomplete survey data is a new subject. This study proposes a Hopfield neural network based model of classification for incomplete survey data. Using this model, an incomplete pattern is translated into fuzzy patterns. These fuzzy patterns, along with patterns without missing values, are then used as the exemplar set for teaching the Hopfield neural network. The classifier also retains information of fuzzy class membership for each exemplar pattern. When presenting a test sample, the neural network would find an exemplar that best matches the test pattern and give the classification result. Compared with other classification techniques, the proposed method can utilize more information provided by the data with missing values, and reveal the risk of the classification result on the individual observation basis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Operations Research - Volume 32, Issue 10, October 2005, Pages 2583–2594
نویسندگان
,