کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4925517 | 1431402 | 2017 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Inverse uncertainty quantification of TRACE physical model parameters using sparse gird stochastic collocation surrogate model
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Within the BEPU (Best Estimate plus Uncertainty) methodology uncertainties must be quantified in order to prove that the investigated design remains within acceptance criteria. For best-estimate system thermal-hydraulics codes like TRACE and RELAP5, significant uncertainties come from the closure laws which are used to describe transfer terms in the balance equations. The accuracy and uncertainty information of these correlations are usually unknown to the code users, which results in the user simply ignoring or describing them using expert opinion or personal judgment during uncertainty and sensitivity analysis. The purpose of this paper is to replace such ad-hoc expert judgment of the uncertainty information of TRACE physical model parameters with inverse Uncertainty Quantification (UQ) based on OECD/NRC BWR Full-size Fine-Mesh Bundle Tests (BFBT) benchmark steady-state void fraction data. Inverse UQ seeks statistical descriptions of the physical model random input parameters that are consistent with the experimental data. Inverse UQ always captures the uncertainty of its estimates rather than merely determining point estimates of the best-fit input parameters. Bayesian analysis is used to establish the inverse UQ problems based on experimental data, with systematic and rigorously derived surrogate models based on Sparse Gird Stochastic Collocation (SGSC). Global sensitivity analysis including Sobol' indices and correlation coefficients are used to identify the important TRACE input parameters. Several adaptive Markov Chain Monte Carlo (MCMC) sampling techniques are investigated and implemented to explore the posterior probability density functions. This research solves the problem of lack of uncertainty information for TRACE physical model parameters for the closure relations. The quantified uncertainties are necessary for future uncertainty and sensitivity study of TRACE code in nuclear reactor system design and safety analysis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Engineering and Design - Volume 319, 1 August 2017, Pages 185-200
Journal: Nuclear Engineering and Design - Volume 319, 1 August 2017, Pages 185-200
نویسندگان
Xu Wu, Travis Mui, Guojun Hu, Hadi Meidani, Tomasz Kozlowski,