کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4925640 1431411 2016 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysis of core degradation and relocation phenomena and scenarios in a Nordic-type BWR
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
پیش نمایش صفحه اول مقاله
Analysis of core degradation and relocation phenomena and scenarios in a Nordic-type BWR
چکیده انگلیسی
Severe Accident Management (SAM) in Nordic Boiling Water Reactors (BWR) employs ex-vessel cooling of core melt debris. The melt is released from the failed vessel and poured into a deep pool of water located under the reactor. The melt is expected to fragment, quench, and form a debris bed, coolable by a natural circulation and evaporation of water. Success of the strategy is contingent upon melt release conditions from the vessel and melt-coolant interaction that determine (i) properties of the debris bed and its coolability (ii) potential for energetic melt-coolant interactions (steam explosions). Risk Oriented Accident Analysis Methodology (ROAAM+) framework is currently under development for quantification of the risks associated with formation of non-coolable debris bed and occurrence of steam explosions, both presenting a credible threats to containment integrity. The ROAAM+ framework consist of loosely coupled models that describe each stage of the accident progression. Core relocation analysis framework provides initial conditions for melt vessel interaction, vessel failure and melt release frameworks. The properties of relocated debris and melt release conditions, including in-vessel and ex-vessel pressure, lower drywell pool depth and temperature, are sensitive to the accident scenarios and timing of safety systems recovery and operator actions. This paper illustrates a methodological approach and relevant data for establishing a connection between core relocation and vessel failure analysis in ROAAM+ approach. MELCOR code is used for analysis of core degradation and relocation phenomena. Properties of relocated debris are obtained as functions of the accident scenario parameters. Pattern analysis is employed in order to characterize typical behavior of core relocation transients. Clustering analysis is employed for grouping of different accident scenarios, which result in similar core relocation behavior and properties of the debris.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Engineering and Design - Volume 310, 15 December 2016, Pages 125-141
نویسندگان
, ,