کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4926146 | 1431592 | 2017 | 64 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Forecasting ground-level irradiance over short horizons: Time series, meteorological, and time-varying parameter models
ترجمه فارسی عنوان
پیش بینی میزان تابش سطح زمین در طول افق کوتاه: سری زمانی، مدل های پارامتری هواشناسی و زمان متغیر
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تابش خورشیدی، مدل های هواشناسی، مدل های سری زمانی، پیش بینی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
One of the key enabling technologies for integrating solar energy into the grid is short-range forecasting. Two issues have emerged in the literature. The first has to do with the relative merits of physics-based versus time series models. The second is how to parameterize short-term variability. One promising approach is time-varying parameter models. Time series models can be updated using moving windows. Meteorological models can be adjusted to match the data more closely. This study evaluates several types of models over forecast horizons ranging from 15Â min to 4Â h, using data from two locations in the United States. The Weather Research Forecast (WRF) model is a state-of-the art numerical weather prediction system. The Dynamic Integrated Forecast (DICast) system combines meteorological models with statistical adjustments. The primary time series model is the ARIMA. Several other techniques are also tested, cloud advection, smart persistence forecasts and regression trees. Each type of model is found to have particular strengths and weaknesses. Among time series models, ARIMAs with time-varying coefficients are superior to fixed coefficient methods. In a direct comparison of meteorological and time series models, the ARIMA is more accurate at short horizons, while the numerical weather prediction models are more accurate as the horizon extends. The convergence point, at which the two methods achieve similar degrees of accuracy, is in the range of 1-3Â h. Adjusting meteorological model output using statistical corrections at regular intervals, as in the DICast, consistently outperforms the alternatives at horizons of 2-4Â h, and is highly competitive at 1Â h.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 112, November 2017, Pages 474-485
Journal: Renewable Energy - Volume 112, November 2017, Pages 474-485
نویسندگان
Gordon Reikard, Sue Ellen Haupt, Tara Jensen,