کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4926905 | 1431602 | 2017 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Short-term probabilistic forecasts for Direct Normal Irradiance
ترجمه فارسی عنوان
پیش بینی های احتمالی کوتاه مدت برای تابش نور مستقیم
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
A k-nearest neighbor (kNN) ensemble model has been developed to generate Probability Density Function (PDF) forecasts for intra-hour Direct Normal Irradiance (DNI). This probabilistic forecasting model, which uses diffuse irradiance measurements and cloud cover information as exogenous feature inputs, adaptively provides arbitrary PDF forecasts for different weather conditions. The proposed models have been quantitatively evaluated using data from different locations characterized by different climates (continental, coastal, and island). The performance of the forecasts is quantified using metrics such as Prediction Interval Coverage Probability (PICP), Prediction Interval Normalized Averaged Width (PINAW), Brier Skill Score (BSS), and the Continuous Ranked Probability Score (CRPS), and other standard error metrics. A persistence ensemble probabilistic forecasting model and a Gaussian probabilistic forecasting model are employed to benchmark the performance of the proposed kNN ensemble model. The results show that the proposed model significantly outperform both reference models in terms of all evaluation metrics for all locations when the forecast horizon is greater than 5-min. In addition, the proposed model shows superior performance in predicting DNI ramps.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Renewable Energy - Volume 101, February 2017, Pages 526-536
Journal: Renewable Energy - Volume 101, February 2017, Pages 526-536
نویسندگان
Yinghao Chu, Carlos F.M. Coimbra,