کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4932614 1433531 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Subacute ibuprofen treatment rescues the synaptic and cognitive deficits in advanced-aged mice
ترجمه فارسی عنوان
درمان با ایبوپروفن زیر سکته مغزی اختلالات سیناپسی و شناختی را در موش های پیشرفته سنین نجات می دهد
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی سالمندی
چکیده انگلیسی
Aging is accompanied by increased neuroinflammation, synaptic dysfunction, and cognitive deficits both in rodents and humans, yet the onset and progression of these deficits throughout the life span remain unknown. These aging-related deficits affect the quality of life and present challenges to our aging society. Here, we defined age-dependent and progressive impairments of synaptic and cognitive functions and showed that reducing astrocyte-related neuroinflammation through anti-inflammatory drug treatment in aged mice reverses these events. By comparing young (3 months), middle-aged (18 months), aged (24 months), and advanced-aged wild-type mice (30 months), we found that the levels of an astrocytic marker, glial fibrillary acidic protein, progressively increased after 18 months of age, which preceded the decreases of the synaptic marker PSD-95. Hippocampal long-term potentiation was also suppressed in an age-dependent manner, where significant deficits were observed after 24 months of age. Fear conditioning tests demonstrated that associative memory in the context and cued conditions was decreased starting at the ages of 18 and 30 months, respectively. When the mice were tested on hidden platform water maze, spatial learning memory was significantly impaired after 24 months of age. Importantly, subacute treatment with the anti-inflammatory drug ibuprofen suppressed astrocyte activation and restored synaptic plasticity and memory function in advanced-aged mice. These results support the critical contribution of aging-related inflammatory responses to hippocampal-dependent cognitive function and synaptic plasticity, in particular during advanced aging. Our findings provide strong evidence that suppression of neuroinflammation could be a promising treatment strategy to preserve cognition during aging.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurobiology of Aging - Volume 53, May 2017, Pages 112-121
نویسندگان
, , , , , , , , , ,