کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4942063 | 1436988 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A flexible ILP formulation for hierarchical clustering
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Hierarchical clustering is a popular approach in a number of fields with many well known algorithms. However, all existing work to our knowledge implements a greedy heuristic algorithm with no explicit objective function. In this work we formalize hierarchical clustering as an integer linear programming (ILP) problem with a natural objective function and the dendrogram properties enforced as linear constraints. Our experimental work shows that even for small data sets finding the global optimum produces more accurate results. Formalizing hierarchical clustering as an ILP with constraints has several advantages beyond finding the global optima. Relaxing the dendrogram constraints such as transitivity can produce novel problem variations such as finding hierarchies with overlapping clusterings. It is also possible to add constraints to encode guidance such as must-link, cannot-link, must-link-before etc. Finally, though exact solvers exist for ILP we show that a simple randomized algorithm and a linear programming (LP) relaxation can be used to provide approximate solutions faster.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 244, March 2017, Pages 95-109
Journal: Artificial Intelligence - Volume 244, March 2017, Pages 95-109
نویسندگان
Sean Gilpin, Ian Davidson,