کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4942877 | 1437571 | 2017 | 42 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Oh Gosh!! Why is this game so hard? Identifying cycle patterns in 2D platform games using provenance data
ترجمه فارسی عنوان
ای خدا!! چرا این بازی خیلی سخت است؟ شناسایی الگوهای چرخه در بازی های پلت فرم دو بعدی با استفاده از داده های پروتکل
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
معادله الگوی متوالی، چرخه بازی، داده های پرونده، شناسایی چرخه بد، تجزیه و تحلیل گیم پلی، تجزیه و تحلیل بازی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
There are many elements that make a game interesting for the player. The game play is a key element. It is the way in which players interact with a game. In general, this interaction starts easier and becomes more challenge along the game session. Commonly game developers try to make balanced games, but due to the big variety of age, genre and expertise among players, this is not a trivial task and sometimes the game may become too difficult for some users, thus becoming boring. In this article we focus on identifying one aspect in special: the cycles in a game session, which represent a sequence of actions that are played repeatedly by the player in certain parts of the game. These cycles tend to make the game tedious. This way, it is a top priority for game designers to identify cycles. In this article we propose an approach identifies cycles in games using sequential pattern mining algorithms over provenance data collected from the game session. Using the proposed approach, we are able to identify cycles in the game session and we evaluated the feasibility of our proposal with the 2D game “Super Mario World”, a well-known commercial title.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Entertainment Computing - Volume 19, March 2017, Pages 65-81
Journal: Entertainment Computing - Volume 19, March 2017, Pages 65-81
نویسندگان
Lidson Jacob, Esteban Clua, Daniel de Oliveira,