کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4942989 1437616 2017 62 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Twitter data laid almost bare: An insightful exploratory analyser
ترجمه فارسی عنوان
اطلاعات توییتر تقریبا لخت شده اند: یک تجزیه کننده اکتشافی بصری
کلمات کلیدی
آنالیز خوشه ای، قوانین انجمن، فاصله متناسب با زمان، تویت ها، شبکه های اجتماعی، جرقه آپاچی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
This paper presents TCharM, a data analytics methodology based on cluster analysis and association rule discovery to gain interesting knowledge from large collections of Twitter data. TCharM explores tweet collections along the three dimensions characterizing tweets (i.e., text content, posting time and place) to support context-aware topic trend analysis. To discover groups of tweets with a good cohesion on the three tweet features, TCharM exploits a novel distance measure (TASTE) which allows driving the clustering task by considering in one step the three tweet features. Association rule analysis is then exploited to concisely describe the cluster content with a set of understandable and significant patterns which reveal underlying correlations among frequent topics, tweeting times and places. TCharM can provide useful information to understand the evolution of people's involvement in different topics, across geographical areas and over time. TCharM find applications in various domains by providing a valuable support in decision making to domain experts. The experimental evaluation performed on real datasets demonstrates the effectiveness of the proposed approach in discovering cohesive clusters and actionable knowledge from Twitter data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 90, 30 December 2017, Pages 501-517
نویسندگان
, , , ,