کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4943024 1437614 2018 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantifying the resilience of machine learning classifiers used for cyber security
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Quantifying the resilience of machine learning classifiers used for cyber security
چکیده انگلیسی
In this work we study the adversarial resilience of detection systems based on supervised machine learning models. We provide a formal definition for adversarial resilience while focusing on multisensory fusion systems. We define the model robustness (MRB) score, a metric for evaluating the relative resilience of different models, and suggest two novel feature selection algorithms for constructing adversary aware classifiers. The first algorithm selects only features that cannot realistically be modified by the adversary, while the second algorithm allows control over the resilience versus accuracy tradeoff. Finally, we evaluate our approach with a real-life use case of dynamic malware classification using an extensive, up-to-date corpus of benign and malware executables. We demonstrate the potential of using adversary aware feature selection for building more resilient classifiers and provide empirical evidence supporting the inherent resilience of ensemble algorithms compared to single model algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 92, February 2018, Pages 419-429
نویسندگان
, ,