کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4943081 1437623 2017 40 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making
ترجمه فارسی عنوان
یک روش تولید نسل طبیعی برای حمایت از درک و ردیابی تجزیه و تحلیل حساسیت ترجیحی چند بعدی در تصمیم گیری چند معیار
کلمات کلیدی
سیستم های پشتیبانی تصمیم، تجزیه و تحلیل معیارها، مدل سازی عدم قطعیت مطلوب، تولید زبان طبیعی، تجزیه و تحلیل حساسیت چند بعدی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Multi-Criteria Decision Analysis (MCDA) enables decision makers (DM) and decision analysts (DA) to analyse and understand decision situations in a structured and formalised way. With the increasing complexity of decision support systems (DSSs), it becomes challenging for both expert and novice users to understand and interpret the model results. Natural language generation (NLG) techniques are used in various DSSs to cope with this challenge as they reduce the cognitive effort to achieve understanding of decision situations. However, NLG techniques in MCDA have so far mainly been developed for deterministic decision situations or one-dimensional sensitivity analyses. In this paper, a concept for the generation of textual explanations for a multi-dimensional preferential sensitivity analysis in MCDA is developed. The key contribution is a NLG approach that provides detailed explanations of the implications of preferential uncertainties in Multi-Attribute Value Theory (MAVT). It generates a report that assesses the influences of simultaneous or separate variations of inter-criteria and intra-criteria preferential parameters determined within the decision analysis. We explore the added value of the natural language report in an online survey. Our results show that the NLG approach is particularly beneficial for difficult interpretational tasks.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 83, 15 October 2017, Pages 131-144
نویسندگان
, ,