کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4943126 | 1437622 | 2017 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Computational drug repositioning using collaborative filtering via multi-source fusion
ترجمه فارسی عنوان
جابجایی داروهای محاسباتی با استفاده از فیلتر همگانی از طریق تلفیق چند منبع
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تغییر مکان مواد مخدر، منابع داده چندگانه، فیلتر کردن همگانی، شباهت، بهینه سازی تابع هدف،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Drug repositioning contributes to a remarkable reduction in time and cost in traditional de novo drug discovery. In this study, we propose a multi-source-based drug repositioning method by using collaborative filtering to discover new indications of drugs. First, we integrate multiple data sources which are drug chemical structures, drug target proteins, and drug-disease associations to extract similarity matrices of drugs and diseases, respectively. Based on different similarity matrices, collaborative filtering is utilized to predict the drug-disease incidence matrix. Then an optimization objective function is designed to adjust the weight of each data source, and informative sources are noticed with the larger weights. Finally, experimental results on benchmark data sets reveal that the proposed algorithm is helpful to improve the prediction performance, by taking Alzheimer's disease and stroke as two examples, it is confirmed that the proposed algorithm can produce credible repositioning drugs in the treatment for these two diseases.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 84, 30 October 2017, Pages 281-289
Journal: Expert Systems with Applications - Volume 84, 30 October 2017, Pages 281-289
نویسندگان
Jia Zhang, Candong Li, Yaojin Lin, Youwei Shao, Shaozi Li,