کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4943127 1437622 2017 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Volatility of main metals forecasted by a hybrid ANN-GARCH model with regressors
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Volatility of main metals forecasted by a hybrid ANN-GARCH model with regressors
چکیده انگلیسی
In this article, we analyze volatility forecasts associated with the price of gold, silver, and copper, three of the most important metals in the world market. First, a group of GARCH models are used to forecast volatility, including explanatory variables like the US Dollar-Euro and US Dollar-Yen exchange rates, the oil price, and the Chinese, Indian, British, and American stock market indexes. Subsequently, these model predictions are used as inputs for a neural network in order to analyze the increase in hybrid predictive power. The results obtained show that for these three metals, using the hybrid neural network model increases the forecasting power of out-of-sample volatility. In order to optimize the results, we conducted a series of sensitizations of the artificial neural network architecture and analyses for different cases, finding that the best models to forecast the price return volatility of these main metals are the ANN-GARCH model with regressors. Due to the heteroscedasticity in the financial series, the loss function used is Heteroskedasticity-adjusted Mean Squared Error (HMSE), and to test the superiority of the models, the Model Confidence Set is used.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 84, 30 October 2017, Pages 290-300
نویسندگان
, ,