کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4943312 1437620 2017 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multilevel thresholding using grey wolf optimizer for image segmentation
ترجمه فارسی عنوان
آستانه چند سطحی با استفاده از بهینه سازی گرگ خاکستری برای تقسیم بندی تصویر
کلمات کلیدی
آستانه چند سطحی، تقسیم بندی تصویر، بهینه ساز گرگ خاکستری انتروپی کاپور، آستانه اوزو،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Multilevel thresholding is one of the most important areas in the field of image segmentation. However, the computational complexity of multilevel thresholding increases exponentially with the increasing number of thresholds. To overcome this drawback, a new approach of multilevel thresholding based on Grey Wolf Optimizer (GWO) is proposed in this paper. GWO is inspired from the social and hunting behaviour of the grey wolves. This metaheuristic algorithm is applied to multilevel thresholding problem using Kapur's entropy and Otsu's between class variance functions. The proposed method is tested on a set of standard test images. The performances of the proposed method are then compared with improved versions of PSO (Particle Swarm Optimization) and BFO (Bacterial Foraging Optimization) based multilevel thresholding methods. The quality of the segmented images is computed using Mean Structural SIMilarity (MSSIM) index. Experimental results suggest that the proposed method is more stable and yields solutions of higher quality than PSO and BFO based methods. Moreover, the proposed method is found to be faster than BFO but slower than the PSO based method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 86, 15 November 2017, Pages 64-76
نویسندگان
, ,