کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4943316 | 1437620 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Discovering socially important locations of social media users
ترجمه فارسی عنوان
کشف مکان های اجتماعی مهم از کاربران رسانه های اجتماعی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
معادن مکان های اجتماعی مهم معادن رسانه های اجتماعی فضایی، تجزیه و تحلیل اطلاعات رسانه های اجتماعی تاریخی، سایت های شبکه اجتماعی رسانه ای، توییتر،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Socially important locations are places that are frequently visited by social media users in their social media life. Discovering socially interesting, popular or important locations from a location based social network has recently become important for recommender systems, targeted advertisement applications, and urban planning, etc. However, discovering socially important locations from a social network is challenging due to the data size and variety, spatial and temporal dimensions of the datasets, the need for developing computationally efficient approaches, and the difficulty of modeling human behavior. In the literature, several studies are conducted for discovering socially important locations. However, majority of these studies focused on discovering locations without considering historical data of social media users. They focused on analysis of data of social groups without considering each user's preferences in these groups. In this study, we proposed a method and interest measures to discover socially important locations that consider historical user data and each user's (individual's) preferences. The proposed algorithm was compared with a naïve alternative using real-life Twitter dataset. The results showed that the proposed algorithm outperforms the naïve alternative.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 86, 15 November 2017, Pages 113-124
Journal: Expert Systems with Applications - Volume 86, 15 November 2017, Pages 113-124
نویسندگان
Ahmet Sakir Dokuz, Mete Celik,