کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4943479 | 1437633 | 2017 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The impact of microblogging data for stock market prediction: Using Twitter to predict returns, volatility, trading volume and survey sentiment indices
ترجمه فارسی عنوان
تأثیر داده های میکروبلاگینگ برای پیش بینی بازار سهام: استفاده از توییتر برای پیش بینی بازده، نوسان، حجم معاملات و شاخص های نظرسنجی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
بازار سهام، توییتر، استخراج داده ها و متن، پسرفت،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In this paper, we propose a robust methodology to assess the value of microblogging data to forecast stock market variables: returns, volatility and trading volume of diverse indices and portfolios. The methodology uses sentiment and attention indicators extracted from microblogs (a large Twitter dataset is adopted) and survey indices (AAII and II, USMC and Sentix), diverse forms to daily aggregate these indicators, usage of a Kalman Filter to merge microblog and survey sources, a realistic rolling windows evaluation, several Machine Learning methods and the Diebold-Mariano test to validate if the sentiment and attention based predictions are valuable when compared with an autoregressive baseline. We found that Twitter sentiment and posting volume were relevant for the forecasting of returns of S&P 500 index, portfolios of lower market capitalization and some industries. Additionally, KF sentiment was informative for the forecasting of returns. Moreover, Twitter and KF sentiment indicators were useful for the prediction of some survey sentiment indicators. These results confirm the usefulness of microblogging data for financial expert systems, allowing to predict stock market behavior and providing a valuable alternative for existing survey measures with advantages (e.g., fast and cheap creation, daily frequency).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 73, 1 May 2017, Pages 125-144
Journal: Expert Systems with Applications - Volume 73, 1 May 2017, Pages 125-144
نویسندگان
Nuno Oliveira, Paulo Cortez, Nelson Areal,