کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4943690 1437640 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A priori synthetic over-sampling methods for increasing classification sensitivity in imbalanced data sets
ترجمه فارسی عنوان
روش پیش نمونه های مصنوعی برای افزایش حساسیت طبقه بندی در مجموعه داده های نامتعادل
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Building accurate classifiers for predicting group membership is made difficult when using data that is skewed or imbalanced which is typical of real world data sets. The classifier has a tendency to be biased towards the over represented or majority group as a result. Re-sampling techniques offer simple approaches that can be used to minimize the effect. Over-sampling methods aim to combat class imbalance by increasing the number of minority group samples also refereed to as members of the minority group. Over the last decade SMOTE based methods have been used and extended to overcome this problem. There has been little emphasis on improvements to this approach with consideration to data intrinsic properties beyond that of class imbalance alone. In this paper we introduce modifications to a priori based methods Safe Level OUPS and OUPS that result in improvement for sensitivity measures over competing approaches using the SMOTE based method such as the Local neighborhood extension to SMOTE (LN-SMOTE), Borderline-SMOTE and Safe-Level-SMOTE.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 66, 30 December 2016, Pages 124-135
نویسندگان
, ,