کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4943729 1437639 2017 28 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An online Bayesian filtering framework for Gaussian process regression: Application to global surface temperature analysis
ترجمه فارسی عنوان
یک چارچوب فیلترینگ بیزی آنلاین برای رگرسیون گاوسی: کاربرد در تجزیه و تحلیل دمای سطح زمین
کلمات کلیدی
رگرسیون فرآیند گاوسی، فیلتر ذرات مجزا، یادگیری پارامتر آنلاین، تجزیه و تحلیل دمای سطح جهانی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Over the past centuries, global warming has gradually become one of the most significant issues in our life. Hence, it is crucial to analyze global surface temperature with an efficient and accurate model. Gaussian process (GP) is a popular nonparametric model, due to the power of Bayesian inference framework. However, the performance of GP is often deteriorated for large-scale data sets such as global surface temperature. In this work, we propose a novel online Bayesian filtering framework for large-scale GP regression. There are three contributions. Firstly, we develop a novel GP-based state space model to efficiently process data in a sequential manner. Secondly, based on our state space model, we design a marginalized particle filter to infer the latent function values and learn the model parameters online. It can efficiently reduce the computation burden of GP while improving the estimation accuracy in a recursive Bayesian inference framework. Finally, we successfully apply our approach to a number of synthetic data sets and the large-scale global surface temperature data set. The results show that our approach outperforms related GP variants, and it is an efficient and accurate expert system for global surface temperature analysis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 67, January 2017, Pages 285-295
نویسندگان
, ,