کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
494462 862796 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
FP-ELM: An online sequential learning algorithm for dealing with concept drift
ترجمه فارسی عنوان
FP-ELM: یک الگوریتم یادگیری متوالی آنلاین برای مقابله با رانش مفهوم
کلمات کلیدی
یادگیری ماشین افراطی؛ یادگیری آنلاین/افزایشی؛ رانش مفهوم؛ روش بهینه سازی منظم
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

The online sequential extreme learning machine (OS-ELM) algorithm is an on-line and incremental learning method, which can learn data one-by-one or chunk-by-chunk with a fixed or varying chunk size. And OS-ELM achieves the same learning performance as ELM trained by the complete set of data. However, in on-line learning environments, the concepts to be learned may change with time, a feature referred to as concept drift. To use ELMs in such non-stationary environments, a forgetting parameters extreme learning machine (FP-ELM) is proposed in this paper. The proposed FP-ELM can achieve incremental and on-line learning, just like OS-ELM. Furthermore, FP-ELM will assign a forgetting parameter to the previous training data according to the current performance to adapt to possible changes after a new chunk comes. The regularized optimization method is used to avoid estimator windup. Performance comparisons between FP-ELM and two frequently used ensemble approaches are carried out on several regression and classification problems with concept drift. The experimental results show that FP-ELM produces comparable or better performance with lower training time.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 207, 26 September 2016, Pages 322–334
نویسندگان
, , ,