کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946052 | 1439266 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Compressed constrained spectral clustering framework for large-scale data sets
ترجمه فارسی عنوان
چارچوب خوشه بند طیفی فشرده برای مجموعه داده های بزرگ در مقیاس
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
خوشه بندی محدود طیفی، برجسته، تجزیه ماتریکس، بهره وری، اثربخشی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
The method of incorporating constraint information into spectral clustering, i.e., \constrained spectral clustering (CSC), can greatly improve clustering accuracy, and thus has been widely employed in the machine learning literature. In this paper, we propose a compressed CSC framework by combining specific graph constructions with a recently introduced CSC model. Particularly, our framework has ability to avoid losing the main partition information in the compression process. By presenting a theoretical analysis and empirical results, we demonstrate that our new framework can achieve the same clustering solution as that of the original model with the specific graph structure. In addition, because our framework utilizes landmark-based graph construction and the approximate matrix decomposition simultaneously, it can be applied to both feature and graph data in a more general way. Moreover, the parameter setting in our framework is rather simple, and therefore it is very practical. Experimental results indicate that our framework has advantages in terms of efficiency and effectiveness.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 135, 1 November 2017, Pages 77-88
Journal: Knowledge-Based Systems - Volume 135, 1 November 2017, Pages 77-88
نویسندگان
Wenfen Liu, Mao Ye, Jianghong Wei, Xuexian Hu,