کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946191 | 1439277 | 2017 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
From fuzzy rule-based models to their granular generalizations
ترجمه فارسی عنوان
از مدل های مبتنی بر قاعده فازی به تعمیم گرادیبی آنها
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
محاسبات گرانول، مدل های فازی، مدل های فازی گرانول تخصیص جزئیات اطلاعات معیار پوشش و خصوصیات، بهینه سازی ذرات ذرات، تکامل دیفرانسیل،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In recent years, granular fuzzy models have become an intensively studied category of fuzzy models. Granular fuzzy models help elevate the existing models to the higher level of abstraction subsequently making the resulting constructs in a better rapport with real-world systems. In contrast to numeric models, granular models produce results in the form of information granules (such as intervals, fuzzy sets, rough sets and alike). A number of studies have been focused on efficient designing granular fuzzy models where the information granularity has been formalized in the form of intervals. In this study, we propose a novel conceptual and algorithmic approach by elevating existing fuzzy models to granular fuzzy models in the form of fuzzy sets. Concentrating on Takagi-Sugeno fuzzy rule-based models (being commonly used in the literature), we establish a way of an optimal allocation of information granularity across the parameters of the original model and making them fuzzy sets (fuzzy numbers). As a result, the outputs of the granular fuzzy model become fuzzy sets. In the process of allocation of information granularity, we resort ourselves to some population-based meta-heuristic optimization techniques such as particle swarm optimization and differential evolution. To evaluate the performance of granular fuzzy models, we engage the principle of justifiable information granularity leading to the assessment and optimization of the coverage and specificity of the resulting fuzzy set. Besides, we involve the defuzzification (decoding) process to evaluate the impact of granular parameters on the quality of the numeric manifestation of the model. Comprehensive experimental studies involving synthetic and publicly available data sets are reported to demonstrate the performance of the granular fuzzy models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 124, 15 May 2017, Pages 133-143
Journal: Knowledge-Based Systems - Volume 124, 15 May 2017, Pages 133-143
نویسندگان
Xingchen Hu, Witold Pedrycz, Wang Xianmin,