| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 4946966 | 1439561 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Modeling of nonlinear systems using the self-organizing fuzzy neural network with adaptive gradient algorithm
ترجمه فارسی عنوان
مدل سازی سیستم های غیر خطی با استفاده از شبکه عصبی فازی سازماندهی شده با الگوریتم تطبیقی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In this paper, a self-organizing fuzzy neural network with adaptive gradient algorithm (SOFNN-AGA) is proposed for nonlinear systems modeling. First, a potentiality of fuzzy rules (PFR) method is introduced by using the output of normalized layer and the error reduction ratio (ERR) in the training process. And a structure learning approach is developed to determine the network size based on PFR. Second, a novel adaptive gradient algorithm (AGA) with adaptive learning rate is designed to adjust the parameters of SOFNN-AGA. Moreover, a theoretical analysis on the convergence of SOFNN-AGA is given to show the efficiency in both fixed structure and self-organizing structure cases. Finally, to demonstrate the merits of SOFNN-AGA, simulation and experimental results of several benchmark problems and a real world application are examined for nonlinear systems modeling with comparisons against other existing methods. Some promising results are reported in this study, indicating that the proposed SOFNN-AGA performs better favorably in terms of both convergence speed and modeling accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 266, 29 November 2017, Pages 566-578
Journal: Neurocomputing - Volume 266, 29 November 2017, Pages 566-578
نویسندگان
Han Hong-Gui, Lin Zheng-Lai, Qiao Jun-Fei,
