کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4947207 | 1439568 | 2017 | 18 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Iterative sparsity score for feature selection and its extension for multimodal data
ترجمه فارسی عنوان
نمره اسپارتی جالب برای انتخاب ویژگی و گسترش آن برای داده های چندجمله ای
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
انتخاب ویژگی، بازنمایی نادرست تندرست، چند منظوره بیماری آلزایمر، خوشه بندی طبقه بندی، 00-01، 99-00،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
As a key dimensionality reduction technique in pattern recognition, feature selection has been widely used in information retrieval, text classification and genetic data analysis. In recent years, structural information contained in samples for guiding feature selection has become a new hot spot in machine learning field. Although tremendous feature selection methods have been developed, less important features are still used to construct the structure in those conventional structure based feature selection approaches. In this paper, we propose a new filter-type feature selection method called iterative sparsity score, which is independent of any learning algorithm. The proposed method can preserve the structural information by sparse representation, which can be efficiently solved by a â1-norm minimization problem. To exclude data noise, at one time we discard last m features and iteratively optimize the â1-norm minimization problem. We perform clustering and classification experiments on numerous bench mark datasets. Furthermore, its extension for multimodal data is also developed. We adopt the multi-modality alzheimer's disease data for classification to evaluate the extended method. The experimental results show the effectiveness of our proposed methods compared with several popular feature selection approaches.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 259, 11 October 2017, Pages 146-153
Journal: Neurocomputing - Volume 259, 11 October 2017, Pages 146-153
نویسندگان
Chen Zu, Linling Zhu, Daoqiang Zhang,