کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4947282 1439570 2017 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Joint entity and relation extraction based on a hybrid neural network
ترجمه فارسی عنوان
واحد مشترک و استخراج رابطه بر اساس یک شبکه عصبی ترکیبی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Entity and relation extraction is a task that combines detecting entity mentions and recognizing entities' semantic relationships from unstructured text. We propose a hybrid neural network model to extract entities and their relationships without any handcrafted features. The hybrid neural network contains a novel bidirectional encoder-decoder LSTM module (BiLSTM-ED) for entity extraction and a CNN module for relation classification. The contextual information of entities obtained in BiLSTM-ED further pass though to CNN module to improve the relation classification. We conduct experiments on the public dataset ACE05 (Automatic Content Extraction program) to verify the effectiveness of our method. The method we proposed achieves the state-of-the-art results on entity and relation extraction task.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 257, 27 September 2017, Pages 59-66
نویسندگان
, , , , , , ,