کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4947340 | 1439574 | 2017 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multimodal learning for topic sentiment analysis in microblogging
ترجمه فارسی عنوان
یادگیری چندجمله ای برای تحلیل احساسات در میکروبلاگینگ
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Microblogging has become a widely-spread platform of human communication. The massive amount of opinion-rich data in microblogging is helpful to analyze and manage public opinion and social emotion. Different from traditional texts, microblogging data are multimodal, containing multifarious data such as emoticons, image, etc. Most existing sentiment and topic detection approaches treat the unique microblogging data as noise. However, this may lead to unsatisfactoriness in sentiment classification and topic identification. In order to address the issue, we propose a multimodal joint sentiment topic model (MJST) for weakly supervised sentiment analysis in microblogging, which applies latent Dirichlet allocation (LDA) to simultaneously analyze sentiment and topic hidden in messages based the introduction of emoticons and microbloggers personality. Extensive experiments show that MJST outperforms state-of-the-art unsupervised approaches JST, SLDA and DPLDA significantly in terms of sentiment classification accuracy and is promising.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 253, 30 August 2017, Pages 144-153
Journal: Neurocomputing - Volume 253, 30 August 2017, Pages 144-153
نویسندگان
Huang Faliang, Zhang Shichao, Zhang Jilian, Yu Ge,