کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4947647 | 1439593 | 2017 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A survey of deep neural network architectures and their applications
ترجمه فارسی عنوان
یک بررسی از معماری شبکه های عصبی عمیق و برنامه های کاربردی آنها
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Since the proposal of a fast learning algorithm for deep belief networks in 2006, the deep learning techniques have drawn ever-increasing research interests because of their inherent capability of overcoming the drawback of traditional algorithms dependent on hand-designed features. Deep learning approaches have also been found to be suitable for big data analysis with successful applications to computer vision, pattern recognition, speech recognition, natural language processing, and recommendation systems. In this paper, we discuss some widely-used deep learning architectures and their practical applications. An up-to-date overview is provided on four deep learning architectures, namely, autoencoder, convolutional neural network, deep belief network, and restricted Boltzmann machine. Different types of deep neural networks are surveyed and recent progresses are summarized. Applications of deep learning techniques on some selected areas (speech recognition, pattern recognition and computer vision) are highlighted. A list of future research topics are finally given with clear justifications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 234, 19 April 2017, Pages 11-26
Journal: Neurocomputing - Volume 234, 19 April 2017, Pages 11-26
نویسندگان
Weibo Liu, Zidong Wang, Xiaohui Liu, Nianyin Zeng, Yurong Liu, Fuad E. Alsaadi,