کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4948230 1439608 2017 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
SAR despeckling via classification-based nonlocal and local sparse representation
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
SAR despeckling via classification-based nonlocal and local sparse representation
چکیده انگلیسی
Nonlocally centralized sparse representation (CSR) is an effective approach for estimating original image in noise. In order to promote sparse coefficients more accurate than CSR, we present a new framework where another nonlocal sparsity constraint term is introduced to work with the original term alternatively. To gain the two nonlocal sparsity constraint terms, we classify the image into different types according to the statistical characteristics of speckle in SAR image firstly. Then, we choose the appropriate methods to denoise different types of image and utilize the projected coefficients of these denoising results to estimate the nonlocal sparsity constraints. Our method not only modifies the well-salgortudied method of CSR, but also applialgories to despeckle SAR image. Experimental results, carried out on both simulated SAR images and real SAR images, demonstrate that the proposed approach has a competitive despeckling performance in terms of both evaluation indicators and visual quality assessment.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 219, 5 January 2017, Pages 174-185
نویسندگان
, , , , , ,