کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948242 | 1439608 | 2017 | 43 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
FASTA-ELM: A fast adaptive shrinkage/thresholding algorithm for extreme learning machine and its application to gender recognition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Extreme learning machine (ELM) is an interesting algorithm for learning the hidden layer of single layer feed forward neural networks. However, one of the main shortcomings restricting further improvement of ELM is the complexity of singular value decomposition (SVD) for computing the Moore-Penrose generalized inverse of the hidden layer matrix. This paper presents a new algorithm named fast adaptive shrinkage/thresholding algorithm ELM (FASTA-ELM) which uses an extension of forward-backward splitting (FBS) to compute the smallest norm of the output weights in ELM. The proposed FASTA-ELM algorithm is evaluated on face gender recognition problem using 5 benchmarked datasets. The results indicate that FASTA-ELM provides efficient performance and outperforms the standard ELM and two other variants of ELM in terms of generalization ability and computational time. Furthermore, the recognition performance of FASTA-ELM is comparable to other state-of-the-art face gender recognition methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 219, 5 January 2017, Pages 312-322
Journal: Neurocomputing - Volume 219, 5 January 2017, Pages 312-322
نویسندگان
Saif F. Mahmood, Mohammad Hamiruce Marhaban, Fakhrul Zaman Rokhani, Khairulmizam Samsudin, Olasimbo Ayodeji Arigbabu,