کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4948295 1439614 2016 46 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Partial least squares for face hashing
ترجمه فارسی عنوان
حداقل مربعات تقریبی برای چهره
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Face identification is an important research topic due to areas such as its application in surveillance, forensics and human-computer interaction. In the past few years, a myriad of methods for face identification has been proposed in the literature, with just a few among them focusing on scalability. In this work, we propose a simple but efficient approach for scalable face identification based on partial least squares (PLS) and random independent hash functions inspired by locality-sensitive hashing (LSH), resulting in the PLS for hashing (PLSH) approach. The original PLSH approach is further extended using feature selection to reduce the computational cost to evaluate the PLS-based hash functions, resulting in the state-of-the-art extended PLSH approach (ePLSH). The proposed approach is evaluated in the dataset FERET and in the dataset FRGCv1. The results show significant reduction in the number of subjects evaluated in the face identification (reduced to 0.3% of the gallery), providing averaged speedups up to 233 times compared to evaluating all subjects in the face gallery and 58 times compared to previous works in the literature.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 213, 12 November 2016, Pages 34-47
نویسندگان
, , , ,