کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948375 | 1439611 | 2016 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
New classifier based on compressed dictionary and LS-SVM
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Inspired by the compressive sensing (CS) theory, a new classifier based on compressed dictionary and Least Squares Support Vector Machine (LS-SVM) is proposed to deal with large scale problems. The coefficients of support vectors can be recovered from a few measurements if LS-SVM is approximated to sparse structure. Using the known Cholesky decomposition, we approximate the given kernel matrix to represent the coefficients of support vectors sparsely by a low-rank matrix that we have used as a dictionary. The proposed measurement matrix being coupled with the dictionary forms a compressed dictionary that proves to satisfy the restricted isometry property (RIP). Our classifier has the quality of low storage and computational complexity, high degree of sparsity and information preservation. Experiments on benchmark data sets show that our classifier has positive performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 216, 5 December 2016, Pages 617-626
Journal: Neurocomputing - Volume 216, 5 December 2016, Pages 617-626
نویسندگان
Chen Sun, Licheng Jiao, Hongying Liu, Shuyuan Yang,