| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4949229 | 1440041 | 2017 | 13 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Lasso, fractional norm and structured sparse estimation using a Hadamard product parametrization
												
											ترجمه فارسی عنوان
													لسو، هنجار کسری و برآورد نادرست ساختاری با استفاده از پارامترزت محصول هادامارد 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												زوج سیسیکال مختصات، مدل خطی متداول رگرسیون خطی، بهینه سازی، رگه رگه، انعطاف پذیری، همبستگی فضایی،
																																							
												موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													نظریه محاسباتی و ریاضیات
												
											چکیده انگلیسی
												Using a multiplicative reparametrization, it is shown that a subclass of Lq penalties with q less than or equal to one can be expressed as sums of L2 penalties. It follows that the lasso and other norm-penalized regression estimates may be obtained using a very simple and intuitive alternating ridge regression algorithm. As compared to a similarly intuitive EM algorithm for Lq optimization, the proposed algorithm avoids some numerical instability issues and is also competitive in terms of speed. Furthermore, the proposed algorithm can be extended to accommodate sparse high-dimensional scenarios, generalized linear models, and can be used to create structured sparsity via penalties derived from covariance models for the parameters. Such model-based penalties may be useful for sparse estimation of spatially or temporally structured parameters.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 115, November 2017, Pages 186-198
											Journal: Computational Statistics & Data Analysis - Volume 115, November 2017, Pages 186-198
نویسندگان
												Peter D. Hoff, 
											