کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4949234 | 1440041 | 2017 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Functional data classification using covariate-adjusted subspace projection
ترجمه فارسی عنوان
طبقه بندی داده های عملکردی با استفاده از طرح های زیر فضایی تنظیم شده است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
طبقه بندی، تجزیه و تحلیل دائمی، تجزیه و تحلیل داده های عملکردی، تجزیه و تحلیل اجزای اصلی عملکرد
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
We propose a covariate-adjusted subspace projection method for classifying functional data, where the covariate effects on the response functions influence the classification outcome. The proposed method is a subspace classifier based on functional projection, and the covariates affect the response function through the mean of a functional regression model. We assume that the response functions in each class are embedded in a class-specific subspace spanned by a covariate-adjusted mean function and a set of eigenfunctions of the covariance kernel through the covariate-adjusted Karhunen-Loève expansion. A newly observed response function is classified into the optimally predicted class that has the minimal L2 distance between the observation and its projection onto the subspaces among all classes. As supported in our simulation study, the covariate adjustment is useful for functional classification, especially when the covariate effects on the mean functions are significantly different among the classes. The data applications to meat quality control and lung cancer mass spectrometry demonstrate the usefulness of the proposed method in functional classification.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computational Statistics & Data Analysis - Volume 115, November 2017, Pages 21-34
Journal: Computational Statistics & Data Analysis - Volume 115, November 2017, Pages 21-34
نویسندگان
Pai-Ling Li, Jeng-Min Chiou, Yu Shyr,