کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4949788 | 1364257 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Solving vertex coloring problems as maximum weight stable set problems
ترجمه فارسی عنوان
حل مسائل رنگ آمیزی ریشه به عنوان حداکثر وزن ثابت مشکلات مجموعه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
رنگ آمیزی ورتکس، مجموعه ای پایدار برنامه ریزی خطی زنجیره ای مختلط، آزمایش های محاسباتی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نظریه محاسباتی و ریاضیات
چکیده انگلیسی
In Vertex Coloring Problems, one is required to assign a color to each vertex of an undirected graph in such a way that adjacent vertices receive different colors, and the objective is to minimize the cost of the used colors. In this work we solve four different coloring problems formulated as Maximum Weight Stable Set Problems on an associated graph. We exploit the transformation proposed by Cornaz and Jost (2008), where given a graph G, an auxiliary graph GË is constructed, such that the family of all stable sets of GË is in one-to-one correspondence with the family of all feasible colorings of G. The transformation in Cornaz and Jost (2008) was originally proposed for the classical Vertex Coloring and the Max-Coloring problems; we extend it to the Equitable Coloring Problem and the Bin Packing Problem with Conflicts. We discuss the relation between the Maximum Weight Stable formulation and a polynomial-size formulation for the VCP, proposed by Campêlo et al. (2008) and called the Representative formulation. We report extensive computational experiments on benchmark instances of the four problems, and compare the solution method with the state-of-the-art algorithms. By exploiting the proposed method, we largely outperform the state-of-the-art algorithm for the Max-coloring Problem, and we are able to solve, for the first time to proven optimality, 14 Max-coloring and 2 Equitable Coloring instances.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Discrete Applied Mathematics - Volume 217, Part 2, 30 January 2017, Pages 151-162
Journal: Discrete Applied Mathematics - Volume 217, Part 2, 30 January 2017, Pages 151-162
نویسندگان
Denis Cornaz, Fabio Furini, Enrico Malaguti,