کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
495484 862827 2014 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improved global-best particle swarm optimization algorithm with mixed-attribute data classification capability
ترجمه فارسی عنوان
الگوریتم بهینه سازی بهترین الگوریتم ذره ای جهان با قابلیت طبقه بندی داده های ترکیبی صحیح بهبود یافته است
کلمات کلیدی
مجموعه داده های مختلط، بهینه سازی ذرات ذرات، نظارت بر یادگیری، طبقه بندی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• We address a major problem encountered in the classification domain: datasets with mixed-attribute value.
• We make a survey of particle swarm optimization approaches to resolve mixed attribute data. We analyze solutions reported in the literature and study possible enhancement.
• We propose an enhancement of a PSO classification algorithm.
• We make a data oriented comparative study.

This paper describes a novel Particle Swarm Optimization (PSO)-based classification algorithm with improved capabilities in comparison to several alternatives. The algorithm uses a new particle-position update mechanism and a new way to handle mixed-attribute data based on particle position interpretation. The new position update mechanism combines particle confinement and dispersion for improved search space coverage, and the proposed interpretation mechanism uses the frequencies of non numerical attributes instead of integer mappings. As our experimental results have shown, this leads to better cost function evaluation in the description space and subsequently enhanced processing of mixed-attribute data by the PSO algorithm. Our experimental setup consisted of three large benchmark databases, and the obtained recognition accuracies were better than those obtained with well-known classifiers.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 21, August 2014, Pages 554–567
نویسندگان
, ,