| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4955799 | 1444362 | 2017 | 22 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Efficient and privacy-aware multi-party classification protocol for human activity recognition
												
											ترجمه فارسی عنوان
													پروتکل طبقه بندی چند جانبه کارآمد و حفظ حریم خصوصی برای شناسایی فعالیت های انسانی 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													مهندسی کامپیوتر
													شبکه های کامپیوتری و ارتباطات
												
											چکیده انگلیسی
												Human activity recognition (HAR) is an important research field that relies on sensing technologies to enable many context-aware applications. Nevertheless, tracking personal signs to enable such applications has given rise to serious privacy issues, especially when using external activity recognition services. In this paper, we propose (Π-Knn): a privacy-preserving version of the K Nearest Neighbors (k-NN) classifier that is mainly built on (Π-CSP+): a novel cryptography-free private similarity evaluation protocol. As a sample application, we consider a medical monitoring system enhanced with a HAR process based on our privacy preserving classifier. The integration of the privacy preserving HAR aims to improve the accuracy of the clinical decision support. We conduct a standard security analysis to prove that our protocols provide a complete privacy protection against malicious adversaries. We perform a comparative performance evaluation through several experiments while using real HAR system parameters. Experimental evaluations show that our protocol (Π-CSP+) incurs a low increasing overhead (37% in Online classification and 50% in Offline classification) compared to PCSC, a representative state-of-the art protocol, which incurs 3600% and 4800% in online and offline classification respectively. Besides, Π-CSP+ provides a stable and efficient response time (W=0.0x ms) for both short and long duration activities while serving up to 1000 clients. Comparative results confirm the computational efficiency of our protocol against a competitive state-of-the-art protocol.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Network and Computer Applications - Volume 98, 15 November 2017, Pages 84-96
											Journal: Journal of Network and Computer Applications - Volume 98, 15 November 2017, Pages 84-96
نویسندگان
												Zakaria Gheid, Yacine Challal, Xun Yi, Abdelouahid Derhab, 
											