کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
495903 862844 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
hGA: Hybrid genetic algorithm in fuzzy rule-based classification systems for high-dimensional problems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
hGA: Hybrid genetic algorithm in fuzzy rule-based classification systems for high-dimensional problems
چکیده انگلیسی

The aim of this work is to propose a hybrid heuristic approach (called hGA) based on genetic algorithm (GA) and integer-programming formulation (IPF) to solve high dimensional classification problems in linguistic fuzzy rule-based classification systems. In this algorithm, each chromosome represents a rule for specified class, GA is used for producing several rules for each class, and finally IPF is used for selection of rules from a pool of rules, which are obtained by GA. The proposed algorithm is experimentally evaluated by the use of non-parametric statistical tests on seventeen classification benchmark data sets. Results of the comparative study show that hGA is able to discover accurate and concise classification rules.

The overall pseudo-code procedure of the hybrid genetic algorithm in fuzzy rule-based classification systems for high-dimensional problems: hGA. Emel Kızılkaya Aydogan, Ismail Karaoglan, Panos M. Pardalos.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 12, Issue 2, February 2012, Pages 800–806
نویسندگان
, , ,