کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
495916 862844 2012 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Weighted principal component extraction with genetic algorithms
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Weighted principal component extraction with genetic algorithms
چکیده انگلیسی
Pattern recognition techniques have been widely used in a variety of scientific disciplines including computer vision, artificial intelligence, biology, and so forth. Although many methods present satisfactory performances, they still have several weak points, thus leaving a lot of space for further improvements. In this paper, we propose two performance-driven subspace learning methods by extending the principal component analysis (PCA) and the kernel PCA (KPCA). Both methods adopt a common structure where genetic algorithms are employed to pursue optimal subspaces. Because the proposed feature extractors aim at achieving high classification accuracy, enhanced generalization ability can be expected. Extensive experiments are designed to evaluate the effectiveness of the proposed algorithms in real-world problems including object recognition and a number of machine learning tasks. Comparative studies with other state-of-the-art techniques show that the methods in this paper are capable of enhancing generalization ability for pattern recognition systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 12, Issue 2, February 2012, Pages 961-974
نویسندگان
, ,