کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4963721 1447409 2017 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A stabilized cut finite element method for the Darcy problem on surfaces
ترجمه فارسی عنوان
یک روش عنصر محدود برش ثابت برای مشکل دارسی در سطوح
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
We develop a cut finite element method for the Darcy problem on surfaces. The cut finite element method is based on embedding the surface in a three dimensional finite element mesh and using finite element spaces defined on the three dimensional mesh as trial and test functions. Since we consider a partial differential equation on a surface, the resulting discrete weak problem might be severely ill conditioned. We propose a full gradient and a normal gradient based stabilization computed on the background mesh to render the proposed formulation stable and well conditioned irrespective of the surface positioning within the mesh. Our formulation extends and simplifies the Masud-Hughes stabilized primal mixed formulation of the Darcy surface problem proposed in Hansbo and Larson (2016) on fitted triangulated surfaces. The tangential condition on the velocity and the pressure gradient is enforced only weakly, avoiding the need for any tangential projection. The presented numerical analysis accounts for different polynomial orders for the velocity, pressure, and geometry approximation which are corroborated by numerical experiments. In particular, we demonstrate both theoretically and through numerical results that the normal gradient stabilized variant results in a high order scheme.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 326, 1 November 2017, Pages 298-318
نویسندگان
, , ,