کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4964224 | 1447419 | 2017 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The value of continuity: Refined isogeometric analysis and fast direct solvers
ترجمه فارسی عنوان
ارزش تداوم: تجزیه و تحلیل ایزوگومتریک و حل سریع مستقیم
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
We propose the use of highly continuous finite element spaces interconnected with low continuity hyperplanes to maximize the performance of direct solvers. Starting from a highly continuous Isogeometric Analysis (IGA) discretization, we introduce C0-separators to reduce the interconnection between degrees of freedom in the mesh. By doing so, both the solution time and best approximation errors are simultaneously improved. We call the resulting method “refined Isogeometric Analysis (rIGA)”. To illustrate the impact of the continuity reduction, we analyze the number of Floating Point Operations (FLOPs), computational times, and memory required to solve the linear system obtained by discretizing the Laplace problem with structured meshes and uniform polynomial orders. Theoretical estimates demonstrate that an optimal continuity reduction may decrease the total computational time by a factor between p2 and p3, with p being the polynomial order of the discretization. Numerical results indicate that our proposed refined isogeometric analysis delivers a speed-up factor proportional to p2. In a 2D mesh with four million elements and p=5, the linear system resulting from rIGA is solved 22 times faster than the one from highly continuous IGA. In a 3D mesh with one million elements and p=3, the linear system is solved 15 times faster for the refined than the maximum continuity isogeometric analysis.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 316, 1 April 2017, Pages 586-605
Journal: Computer Methods in Applied Mechanics and Engineering - Volume 316, 1 April 2017, Pages 586-605
نویسندگان
Daniel Garcia, David Pardo, Lisandro Dalcin, Maciej PaszyÅski, Nathan Collier, Victor M. Calo,