کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4964673 | 1447885 | 2017 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Early identification of mild cognitive impairment using incomplete random forest-robust support vector machine and FDG-PET imaging
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Alzheimer's disease (AD) is the most common type of dementia and will be an increasing health problem in society as the population ages. Mild cognitive impairment (MCI) is considered to be a prodromal stage of AD. The ability to identify subjects with MCI will be increasingly important as disease modifying therapies for AD are developed. We propose a semi-supervised learning method based on robust optimization for the identification of MCI from [18F]Fluorodeoxyglucose PET scans. We extracted three groups of spatial features from the cortical and subcortical regions of each FDG-PET image volume. We measured the statistical uncertainty related to these spatial features via transformation using an incomplete random forest and formulated the MCI identification problem under a robust optimization framework. We compared our approach to other state-of-the-art methods in different learning schemas. Our method outperformed the other techniques in the ability to separate MCI from normal controls.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computerized Medical Imaging and Graphics - Volume 60, September 2017, Pages 35-41
Journal: Computerized Medical Imaging and Graphics - Volume 60, September 2017, Pages 35-41
نویسندگان
Shen Lu, Yong Xia, Weidong Cai, Michael Fulham, David Dagan Feng, Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative,