کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
496470 862860 2007 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A genetic algorithms based multi-objective neural net applied to noisy blast furnace data
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
A genetic algorithms based multi-objective neural net applied to noisy blast furnace data
چکیده انگلیسی

A genetic algorithms based multi-objective optimization technique was utilized in the training process of a feed forward neural network, using noisy data from an industrial iron blast furnace. The number of nodes in the hidden layer, the architecture of the lower part of the network, as well as the weights used in them were kept as variables, and a Pareto front was effectively constructed by minimizing the training error along with the network size. A predator–prey algorithm efficiently performed the optimization task and several important trends were observed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 7, Issue 1, January 2007, Pages 387–397
نویسندگان
, , ,