کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
496478 862861 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-objective nature-inspired clustering and classification techniques for image segmentation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Multi-objective nature-inspired clustering and classification techniques for image segmentation
چکیده انگلیسی

This paper aims to provide a comprehensive review of nature-inspired techniques used in image segmentation problems. We focus particularly on multi-objective clustering and classification approaches. The approaches are classified based on the various aspects of optimization, various possible problem formulations, and types of datasets modeled. In the multi-objective clustering methods, the definition of the types of representation methods, encoding techniques, and number of clusters defined (fixed/variable) are presented. In the use of multi-objective nature-inspired techniques in classification, we describe issues related to diversity measures, accuracy measures, rule manipulation, and managing uncertainties. Through our analysis of the current state of research, we hope to address important challenges and provide specific directions for future modeling of similar problems with multi-objective optimization techniques.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 11, Issue 4, June 2011, Pages 3271–3282
نویسندگان
, ,