| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 4964905 | 1447931 | 2017 | 75 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A window-based time series feature extraction method
ترجمه فارسی عنوان
سری زمانی مبتنی بر پنجره دارای ویژگی استخراج است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تجزیه و تحلیل سریال، استخراج ویژگی، پتانسیل عمل قلب، فیبریلاسیون دهلیزی، الکتروکاردیوگرافی، انفارکتوس میوکارد،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
نرم افزارهای علوم کامپیوتر
چکیده انگلیسی
This study proposes a robust similarity score-based time series feature extraction method that is termed as Window-based Time series Feature ExtraCtion (WTC). Specifically, WTC generates domain-interpretable results and involves significantly low computational complexity thereby rendering itself useful for densely sampled and populated time series datasets. In this study, WTC is applied to a proprietary action potential (AP) time series dataset on human cardiomyocytes and three precordial leads from a publicly available electrocardiogram (ECG) dataset. This is followed by comparing WTC in terms of predictive accuracy and computational complexity with shapelet transform and fast shapelet transform (which constitutes an accelerated variant of the shapelet transform). The results indicate that WTC achieves a slightly higher classification performance with significantly lower execution time when compared to its shapelet-based alternatives. With respect to its interpretable features, WTC has a potential to enable medical experts to explore definitive common trends in novel datasets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers in Biology and Medicine - Volume 89, 1 October 2017, Pages 466-486
Journal: Computers in Biology and Medicine - Volume 89, 1 October 2017, Pages 466-486
نویسندگان
Deniz Katircioglu-Ãztürk, H. Altay Güvenir, Ursula Ravens, Nazife Baykal,
