کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
496574 862864 2012 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Grey particle swarm optimization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
پیش نمایش صفحه اول مقاله
Grey particle swarm optimization
چکیده انگلیسی

With the help of grey relational analysis, this study attempts to propose two grey-based parameter automation strategies for particle swarm optimization (PSO). One is for the inertia weight and the other is for the acceleration coefficients. By the proposed approaches, each particle has its own inertia weight and acceleration coefficients whose values are dependent upon the corresponding grey relational grade. Since the relational grade of a particle is varying over the iterations, those parameters are also time-varying. Even if in the same iteration, those parameters may differ for different particles. In addition, owing to grey relational analysis involving the information of population distribution, such parameter automation strategies make an attempt on the grey PSO to perform a global search over the search space with faster convergence speed. The proposed grey PSO is applied to solve the optimization problems of 12 unimodal and multimodal benchmark functions for illustration. Simulation results are compared with the adaptive PSO (APSO) and two well-known PSO variants, PSO with linearly varying inertia weight (PSO-LVIW) and PSO with time-varying acceleration coefficients (HPSO-TVAC), to demonstrate the search performance of the grey PSO.

Figure optionsDownload as PowerPoint slideHighlights
► Two grey-based parameter automation strategies are proposed for particle swarm optimization.
► Each particle has its own inertia weight and acceleration coefficients.
► The values of algorithm parameters may differ for different particles or different iterations.
► The proposed grey PSO algorithm can perform a global search with faster convergence speed.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Soft Computing - Volume 12, Issue 9, September 2012, Pages 2985–2996
نویسندگان
, ,